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Abstract Today, data is generated and consumedat unprece-
dented scale. This has lead to novel approaches for scalable
data management subsumed under the term “NoSQL” data-
base systems to handle the ever-increasing data volume and
request loads. However, the heterogeneity and diversity of
the numerous existing systems impede the well-informed
selection of a data store appropriate for a given application
context. Therefore, this article gives a top-down overview of
the field: instead of contrasting the implementation specifics
of individual representatives, we propose a comparative clas-
sification model that relates functional and non-functional
requirements to techniques and algorithms employed in
NoSQL databases. This NoSQL Toolbox allows us to derive
a simple decision tree to help practitioners and researchers
filter potential systemcandidates based on central application
requirements.
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1 Introduction

Traditional relational database management systems
(RDBMSs) provide powerful mechanisms to store and query
structured data under strong consistency and transaction
guarantees and have reached an unmatched level of reliabil-
ity, stability and support through decades of development.
In recent years, however, the amount of useful data in
some application areas has become so vast that it cannot
be stored or processed by traditional database solutions.
User-generated content in social networks or data retrieved
from large sensor networks are only two examples of this
phenomenon commonly referred to as Big Data [35]. A
class of novel data storage systems able to cope with Big
Data are subsumed under the term NoSQL databases, many
of which offer horizontal scalability and higher availability
than relational databases by sacrificing querying capabilities
and consistency guarantees. These trade-offs are pivotal for
service-oriented computing and as-a-service models, since
any stateful service can only be as scalable and fault-tolerant
as its underlying data store.

There are dozens of NoSQL database systems and it is
hard to keep track ofwhere they excel, where they fail or even
where they differ, as implementation details change quickly
and feature sets evolve over time. In this article, we therefore
aim to provide an overview of the NoSQL landscape by dis-
cussing employed concepts rather than system specificities
and explore the requirements typically posed toNoSQLdata-
base systems, the techniques used to fulfil these requirements
and the trade-offs that have to be made in the process. Our
focus lies on key-value, document and wide-column stores,
since these NoSQL categories cover the most relevant tech-
niques and design decisions in the space of scalable data
management.
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In Sect. 2, we describe the most common high-level
approaches towards categorizing NoSQL database systems
either by their data model into key-value stores, document
stores andwide-column stores or by the safety-liveness trade-
offs in their design (CAP and PACELC). We then survey
commonly used techniques in more detail and discuss our
model of how requirements and techniques are related in
Sect. 3, before we give a broad overview of prominent data-
base systems by applying our model to them in Sect. 4. A
simple and abstract decision model for restricting the choice
of appropriate NoSQL systems based on application require-
ments concludes the paper in Sect. 5.

2 High-level system classification

In order to abstract from implementation details of individual
NoSQL systems, high-level classification criteria can be used
to group similar data stores into categories. In this section, we
introduce the two most prominent approaches: data models
and CAP theorem classes.

2.1 Different data models

The most commonly employed distinction between NoSQL
databases is the way they store and allow access to data. Each
system covered in this paper can be categorised as either key-
value store, document store or wide-column store.

2.1.1 Key-value stores

A key-value store consists of a set of key-value pairs with
unique keys. Due to this simple structure, it only supports
get and put operations. As the nature of the stored value is
transparent to the database, pure key-value stores do not sup-
port operations beyond simple CRUD (Create, Read, Update,
Delete). Key-value stores are therefore often referred to as
schemaless [44]: any assumptions about the structure of
stored data are implicitly encoded in the application logic
(schema-on-read [31]) and not explicitly defined through a
data definition language (schema-on-write).

The obvious advantages of this data model lie in its sim-
plicity. The very simple abstraction makes it easy to partition
and query the data, so that the database system can achieve
low latency as well as high throughput. However, if an appli-
cation demandsmore complex operations, e.g. range queries,
this data model is not powerful enough. Figure 1 illustrates
how user account data and settings might be stored in a key-
value store. Since queries more complex than simple lookups
are not supported, data has to be analyzed inefficiently in
application code to extract information like whether cookies
are supported or not (cookies: false).

User:2:friends {23, 76, 233, 11}

[234, 3466, 86, 55]

User:2:se�ngs

User:3:friends

Theme: dark, cookies: false

Value (Opaque)Key

Fig. 1 Key-value stores offer efficient storage and retrieval of arbitrary
values

12338

{
_id: 12338,
customer: { name: 'Ri�er ', age: 32, ... } ,
items: [ { product: 'PC x', qty: 4, ... } , ... ]

}

JSON Document

Key

12339 { ... }

Fig. 2 Document stores are aware of the internal structure of the stored
entity and thus can support queries

2.1.2 Document stores

A document store is a key-value store that restricts values
to semi-structured formats such as JSON1 documents. This
restriction in comparison to key-value stores brings great
flexibility in accessing the data. It is not only possible to
fetch an entire document by its ID, but also to retrieve only
parts of a document, e.g. the age of a customer, and to execute
queries like aggregation, query-by-example or even full-text
search (Fig. 2).

2.1.3 Wide-column stores

Wide-column stores inherit their name from the image that
is often used to explain the underlying data model: a rela-
tional tablewithmany sparse columns. Technically, however,
a wide-column store is closer to a distributed multi-level2

sorted map: the first-level keys identify rows which them-
selves consist of key-value pairs. The first-level keys are
called row keys, the second-level keys are called column
keys. This storage schememakes tableswith arbitrarilymany
columns feasible, because there is no column key without a
corresponding value. Hence, null values can be stored with-
out any space overhead. The set of all columns is partitioned
into so-called column families to colocate columns on disk
that are usually accessed together. On disk, wide-column
stores do not colocate all data from each row, but instead
values of the same column family and from the same row.
Hence, an entity (a row) cannot be retrieved by one single
lookup as in a document store, but has to be joined together

1 The JavaScript Object Notation is a standard format consisting of
nested attribute-value pairs and lists.
2 In some systems (e.g. Bigtable andHBase),multi-versioning is imple-
mented by adding a timestamp as third-level key.
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Fig. 3 Data in a wide-column store

from the columns of all column families. However, this stor-
age layout usually enables highly efficient data compression
andmakes retrieving only a portion of an entity very efficient.
The data are stored in lexicographic order of their keys, so
that data that are accessed together are physically co-located,
given a careful key design. As all rows are distributed into
contiguous ranges (so-called tablets) among different tablet
servers, row scans only involve few servers and thus are very
efficient.

Bigtable [9], which pioneered the wide-column model,
was specifically developed to store a large collection of web-
pages as illustrated in Fig. 3. Every row in thewebpages table
corresponds to a single webpage. The row key is a concate-
nation of the URL components in reversed order and every
column key is composed of the column family name and a
column qualifier, separated by a colon. There are two col-
umn families: the “contents” column family with only one
column holding the actual webpage and the “anchor” column
family holding links to each webpage, each in a separate col-
umn. Every cell in the table (i.e. every value accessible by
the combination of row and column key) can be versioned by
timestamps or version numbers. It is important to note that
much of the information of an entity lies in the keys and not
only in the values [9].

2.2 Consistency-availability trade-offs:
CAP and PACELC

Another defining property of a database apart from how the
data are stored and how they can be accessed is the level of
consistency that is provided. Somedatabases are built to guar-
antee strong consistency and serializability (ACID3), while
others favour availability (BASE4). This trade-off is inherent
to every distributed database system and the huge number of
different NoSQL systems shows that there is awide spectrum
between the two paradigms. In the following, we explain the
two theorems CAP and PACELC according to which data-
base systems can be categorised by their respective positions
in this spectrum.

3 ACID [23]: Atomicity, Consistency, Isolation, Duration.
4 BASE [42]: Basically Available, Soft-state, Eventually consistent.

CAP Like the famous FLP Theorem5 [19], the CAP Theo-
rem, presented by Eric Brewer at PODC 2000 [7] and later
proven by Gilbert and Lynch [21], is one of the truly influen-
tial impossibility results in the field of distributed computing,
because it places an ultimate upper bound on what can pos-
sibly be accomplished by a distributed system. It states that
a sequentially consistent read/write register6 that eventually
responds to every request cannot be realised in an asynchro-
nous system that is prone to network partitions. In other
words, it can guarantee at most two of the following three
properties at the same time:

– Consistency (C) Reads and writes are always executed
atomically and are strictly consistent (linearizable [26]).
Put differently, all clients have the same view on the data
at all times.

– Availability (A) Every non-failing node in the system can
always accept read and write requests by clients and will
eventually return with a meaningful response, i.e. not
with an error message.

– Partition-tolerance (P) The system upholds the previ-
ously displayed consistency guarantees and availability
in the presence of message loss between the nodes or
partial system failure.

Brewer argues that a system can be both available and con-
sistent in normal operation, but in the presence of a system
partition, this is not possible: If the system continues to work
in spite of the partition, there is some non-failing node that
has lost contact to the other nodes and thus has to decide to
either continue processing client requests to preserve avail-
ability (AP, eventual consistent systems) or to reject client
requests in order to uphold consistency guarantees (CP). The
first option violates consistency, because it might lead to
stale reads and conflicting writes, while the second option
obviously sacrifices availability. There are also systems that
usually are available and consistent, but fail completelywhen
there is a partition (CA), for example single-node systems. It
has been shown that the CAP-theorem holds for any consis-
tency property that is at least as strong as causal consistency,
which also includes any recency bounds on the permissi-
ble staleness of data (�-atomicity) [37]. Serializability as
the correctness criterion of transactional isolation does not
require strong consistency. However, similar to consistency,
serializability can also not be achieved under network parti-
tions [15].

5 The FLP theorem states, that in a distributed system with asynchro-
nous message delivery, no algorithm can guarantee to reach a consensus
between participating nodes if one or more of them can fail by stopping.
6 A read/write register is a data structure with only two operations:
setting a specific value (set) and returning the latest value that was set
(get).
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The classification of NoSQL systems as either AP, CP
or CA vaguely reflects the individual systems’ capabilities
and hence is widely accepted as a means for high-level
comparisons. However, it is important to note that the CAP
Theorem actually does not state anything on normal opera-
tion; it merely tells us whether a system favors availability or
consistency in the face of a network partition. In contrast to
the FLP-Theorem, the CAP theorem assumes a failure model
that allows arbitrary messages to be dropped, reordered or
delayed indefinitely. Under the weaker assumption of reli-
able communication channels (i.e. messages always arrive
but asynchronously and possibly reordered) a CAP-system
is in fact possible using the Attiya, Bar-Noy, Dolev algorithm
[2], as long as a majority of nodes are up7.

PACELC This lack of the CAP Theorem is addressed in an
article by Daniel Abadi [1] in which he points out that the
CAP Theorem fails to capture the trade-off between latency
and consistency during normal operation, even though it has
proven to be much more influential on the design of dis-
tributed systems than the availability-consistency trade-off
in failure scenarios. He formulates PACELC which unifies
both trade-offs and thus portrays the design space of distrib-
uted systems more accurately. From PACELC, we learn that
in case of a Partition, there is an Availability-Consistency
trade-off; Else, i.e. in normal operation, there is a Latency-
Consistency trade-off.

This classification basically offers two possible choices
for the partition scenario (A/C) and also two for normal oper-
ation (L/C) and thus appears more fine-grained than the CAP
classification. However, many systems cannot be assigned
exclusively to one single PACELC class and one of the four
PACELC classes, namely PC/EL, can hardly be assigned to
any system.

3 Techniques

Every significantly successful database is designed for a
particular class of applications, or to achieve a specific com-
bination of desirable system properties. The simple reason
why there are so many different database systems is that it is
not possible for any system to achieve all desirable proper-
ties at once. Traditional SQL databases such as PostgreSQL
have been built to provide the full functional package: a
very flexible data model, sophisticated querying capabilities
including joins, global integrity constraints and transactional
guarantees. On the other end of the design spectrum, there
are key-value stores like Dynamo that scale with data and

7 Therefore, consensus as used for coordination in many NoSQL sys-
tems either natively [4] or through coordination services like Chubby
and Zookeeper [28] is even harder to achieve with high availability than
strong consistency [19].

request volume and offer high read and write throughput as
well as low latency, but barely any functionality apart from
simple lookups.

In this section, we highlight the design space of distributed
database systems, concentrating on sharding, replication,
storage management and query processing. We survey the
available techniques and discuss how they are related to dif-
ferent functional and non-functional properties (goals) of
data management systems. In order to illustrate what tech-
niques are suitable to achieve which system properties, we
provide the NoSQL Toolbox (Fig. 4) where each technique
is connected to the functional and non-functional properties
it enables (positive edges only).

3.1 Sharding

Several distributed relational database systems such as Ora-
cle RAC or IBM DB2 pureScale rely on a shared-disk
architecture where all database nodes access the same cen-
tral data repository (e.g. a NAS or SAN). Thus, these systems
provide consistent data at all times, but are also inherently
difficult to scale. In contrast, the (NoSQL) database systems
focused in this paper are built upon a shared-nothing archi-
tecture, meaning each system consists of many servers with
private memory and private disks that are connected through
a network. Thus, high scalability in throughput and data
volume is achieved by sharding (partitioning) data across
different nodes (shards) in the system.

There are three basic distribution techniques: range-
sharding, hash-sharding and entity-group sharding. To make
efficient scans possible, the data can be partitioned into
ordered and contiguous value ranges by range-sharding.
However, this approach requires some coordination through
a master that manages assignments. To ensure elasticity, the
system has to be able to detect and resolve hotspots automat-
ically by further splitting an overburdened shard.

Range sharding is supported by wide-column stores like
BigTable, HBase or Hypertable [49] and document stores,
e.g.MongoDB,RethinkDB,Espresso [43] andDocumentDB
[46]. Another way to partition data over several machines is
hash-sharding where every data item is assigned to a shard
server according to some hash value built from the primary
key. This approach does not require a coordinator and also
guarantees the data to be evenly distributed across the shards,
as long as the used hash function produces an even distribu-
tion. The obvious disadvantage, though, is that it only allows
lookups andmakes scans unfeasible. Hash sharding is used in
key-value stores and is also available in some wide-coloumn
stores like Cassandra [34] or Azure Tables [8].

The shard server that is responsible for a record can be
determined as serverid = hash(id)mod servers, for exam-
ple. However, this hashing scheme requires all records to be
reassigned every time a new server joins or leaves, because it
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Fig. 4 The NoSQL Toolbox: It connects the techniques of NoSQL databases with the desired functional and non-functional system properties
they support

changes with the number of shard servers (servers). Conse-
quently, it infeasible to use in elastic systems like Dynamo,
Riak or Cassandra, which allow additional resources to be
added on-demand and again be removed when dispensable.
For increased flexibility, elastic systems typically use con-
sistent hashing [30] where records are not directly assigned
to servers, but instead to logical partitions which are then
distributed across all shard servers. Thus, only a fraction of
the data have to be reassigned upon changes in the system
topology. For example, an elastic system can be downsized
by offloading all logical partitions residing on a particular
server to other servers and then shutting down the now idle
machine. For details on how consistent hashing is used in
NoSQL systems, see [18].

Entity-group sharding is a data partitioning scheme with the
goal of enabling single-partition transactions on co-located
data. The partitions are called entity-groups and either explic-
itly declared by the application (e.g. in G-Store [14] and
MegaStore [4]) or derived from transactions’ access patterns
(e.g. in Relational Cloud [13] and Cloud SQL Server [5]). If
a transaction accesses data that spans more than one group,
data ownership can be transferred between entity-groups or

the transaction manager has to fallback to more expensive
multi-node transaction protocols.

3.2 Replication

In terms of CAP, conventional RDBMSs are often CA sys-
tems run in single-server mode: The entire system becomes
unavailable on machine failure. And so system operators
secure data integrity and availability through expensive, but
reliable high-end hardware. In contrast, NoSQL systems like
Dynamo, BigTable or Cassandra are designed for data and
request volumes that cannot possibly be handled by one sin-
gle machine, and therefore they run on clusters consisting
of thousands of servers8. Since failures are inevitable and
will occur frequently in any large-scale distributed system,
the software has to cope with them on a daily basis [24].
In 2009, Google fellow Jeff Dean stated [16] that a typical
new cluster at Google encounters thousands of hard drive
failures, 1,000 single-machine failures, 20 rack failures and
several network partitions due to expected and unexpected

8 Low-end hardware is used, because it is substantially more cost-
efficient than high-end hardware [27, Sect. 3.1].
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circumstances in its first year alone. Many more recent cases
of network partitions and outages in large cloud data cen-
ters have been reported [3]. Replication allows the system
to maintain availability and durability in the face of such
errors. But storing the same records on different machines
(replica servers) in the cluster introduces the problem of
synchronization between them and thus a trade-off between
consistency on the one hand and latency and availability on
the other.

Gray et al. [22] propose a two-tier classification of dif-
ferent replication strategies according to when updates are
propagated to replicas and where updates are accepted.
There are two possible choices on tier one (“when”): Eager
(synchronous) replication propagates incoming changes syn-
chronously to all replicas before a commit can be returned to
the client, whereas lazy (asynchronous) replication applies
changes only at the receiving replica and passes them on
asynchronously. The great advantage of eager replication
is consistency among replicas, but it comes at the cost of
higher write latency due to the need to wait for other repli-
cas and impaired availability [22]. Lazy replication is faster,
because it allows replicas to diverge; as a consequence, stale
data might be served. On the second tier (“where”), again,
two different approaches are possible: Either amaster-slave
(primary copy) scheme is pursued where changes can only
be accepted by one replica (the master) or, in a update
anywhere (multi-master) approach, every replica can accept
writes. In master-slave protocols, concurrency control is not
more complex than in a distributed system without repli-
cas, but the entire replica set becomes unavailable, as soon
as the master fails. Multi-master protocols require complex
mechanisms for prevention or detection and reconciliation
of conflicting changes. Techniques typically used for these
purposes are versioning, vector clocks, gossiping and read
repair (e.g. in Dynamo [18]) and convergent or commutative
datatypes [45] (e.g. in Riak).

Basically, all four combinations of the two-tier classifi-
cation are possible. Distributed relational systems usually
perform eager master-slave replication to maintain strong
consistency. Eager update anywhere replication as for exam-
ple featured in Google’s Megastore suffers from a heavy
communication overhead generated by synchronisation and
can cause distributed deadlocks which are expensive to
detect. NoSQL database systems typically rely on lazy repli-
cation, either in combination with the master-slave (CP
systems, e.g. HBase and MongoDB) or the update anywhere
approach (AP systems, e.g. Dynamo and Cassandra). Many
NoSQL systems leave the choice between latency and con-
sistency to the client, i.e. for every request, the client decides
whether to wait for a response from any replica to achieve
minimal latency or for a certainly consistent response (by
a majority of the replicas or the master) to prevent stale
data.

An aspect of replication that is not covered by the two-
tier scheme is the distance between replicas. The obvious
advantage of placing replicas near one another is low latency,
but close proximity of replicas might also reduce the positive
effects on availability; for example, if two replicas of the the
same data item are placed in the same rack, the data item is
not available on rack failure in spite of replication. But more
than the possibility of mere temporary unavailability, placing
replicas nearby also bears the peril of losing all copies at once
in a disaster scenario. An alternative technique for latency
reduction is used in Orestes [20], where data is cached close
to applications using web caching infrastructure and cache
coherence protocols.

Geo-replication can protect the system against complete
data loss and improve read latency for distributed access from
clients. Eager geo-replication, as implemented in Google’s
Megastore [4], Spanner [12], MDCC [32] and Mencius
[38] achieve strong consistency at the cost of higher write
latencies (typically 100ms [12] to 600ms [4]).With lazy geo-
replication as in Dynamo [18], PNUTS [11], Walter [47],
COPS [36], Cassandra [34] and BigTable [9] recent changes
may be lost, but the systemperforms better and remains avail-
able during partitions. Charron-Bost et al. [10, Chapter 12]
and Öszu and Valduriez [41, Chapter 13] provide a compre-
hensive discussion of database replication.

For best performance, database systems need to be opti-
mized for the storage media they employ to serve and persist
data. These are typically main memory (RAM), solid-state
drives (SSDs) and spinning disk drives (HDDs) that can
be used in any combination. Unlike RDBMSs in enter-
prise setups, distributed NoSQL databases avoid specialized
shared-disk architectures in favor of shared-nothing clusters
based on commodity servers (employing commodity storage
media). Storage devices are typically visualized as a “storage
pyramid” (see Fig. 5) [25]. There is also a set of transparent
caches (e.g. L1-L3CPUcaches and disk buffers, not shown in
the Figure), that are only implicitly leveraged through well-
engineered database algorithms that promote data locality.
The very different cost and performance characteristics of
RAM, SSD and HDD storage and the different strategies to
leverage their strengths (storagemanagement) are one reason
for the diversity of NoSQL databases. Storage management
has a spatial dimension (where to store data) and a tem-
poral dimension (when to store data). Update-in-place and
append-only-IO are two complementary spatial techniques
of organizing data; in-memory prescribes RAM as the loca-
tion of data, whereas logging is a temporal technique that
decouples main memory and persistent storage and thus pro-
vides control over when data is actually persisted.

In their seminal paper “the end of an architectural era”
[48], Stonebraker et al. have found that in typical RDBMSs,
only 6.8% of the execution time is spent on “useful work”,
while the rest is spent on:
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Fig. 5 The storage pyramid
and its role in NoSQL systems
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– buffer management (34.6%), i.e. caching to mitigate
slower disk access

– latching (14.2%), to protect shared data structures from
race conditions caused by multi-threading

– locking (16.3%), to guarantee logical isolation of trans-
actions

– logging (11.9%), to ensure durability in the face of fail-
ures

– hand-coded optimizations (16.2 %)

This motivates that large performance improvements can
be expected if RAM is used as primary storage (in-memory
databases [50]). The downside are high storage costs and
lack of durability—a small power outage can destroy the
database state. This can be solved in two ways: The state
can be replicated over n in-memory server nodes protect-
ing against n − 1 single-node failures (e.g. HStore, VoltDB
[29]) or by logging to durable storage (e.g. Redis or SAP
Hana). Through logging, a random write access pattern can
be transformed to a sequential one comprised of received
operations and their associated properties (e.g. redo informa-
tion). Inmost NoSQL systems, the commit rule for logging is
respected, which demands every write operation that is con-
firmed as successful to be logged and the log to be flushed
to persistent storage. In order to avoid the rotational latency
of HDDs incurred by logging each operation individually,
log flushes can be batched together (group commit) which
slightly increases the latency of individual writes, but drasti-
cally improves throughput.

SSDs and more generally all storage devices based on
NAND flash memory differ substantially from HDDs in
various aspects: “(1) asymmetric speed of read and write
operations, (2) no in-place overwrite – the whole block must
be erased before overwriting any page in that block, and (3)
limited program/erase cycles” [40]. Thus, a database sys-
tem’s storage management must not treat SSDs and HDDs
as slightly slower, persistent RAM, since random writes

to an SSD are roughly an order of magnitude slower than
sequential writes. Random reads, on the other hand, can
be performed without any performance penalties. There are
some database systems (e.g. Oracle Exadata, Aerospike) that
are explicitly engineered for these performance characteris-
tics of SSDs. In HDDs, both random reads and writes are
10-100 times slower than sequential access. Logging hence
suits the strengths of SSDs and HDDs which both offer a
significantly higher throughput for sequential writes.

For in-memory databases, an update-in-place access pat-
tern is ideal: It simplifies the implementation and random
writes to RAMare essentially equally fast as sequential ones,
with small differences being hidden by pipelining and the
CPU-cache hierarchy.However, RDBMSs andmanyNoSQL
systems (e.g. MongoDB) employ an update-in-place update
pattern for persistent storage, too. To mitigate the slow ran-
dom access to persistent storage, main memory is usually
used as a cache and complemented by logging to guarantee
durability. In RDBMSs, this is achieved through a complex
buffer poolwhich not only employs cache-replace algorithms
appropriate for typical SQL-based access patterns, but also
ensures ACID semantics. NoSQL databases have simpler
buffer pools that profit from simpler queries and the lack of
ACID transactions. The alternative to the buffer pool model
is to leave caching to the OS through virtual memory (e.g.
employed in MongoDB’s MMAP storage engine). This sim-
plifies the database architecture, but has the downside of
giving less control over which data items or pages reside in
memory and when they get evicted. Also read-ahead (specu-
lative reads) and write-behind (write buffering) transparently
performed with OS buffering lack sophistication as they are
based on file system logics instead of database queries.

Append-only storage (also referred to as log-structuring)
tries to maximize throughput by writing sequentially.
Although log-structured file systems have a long research
history, append-only I/O has only recently been popularized
for databases by BigTable’s use of Log-Structured Merge
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(LSM) trees [9] consisting of an in-memory cache, a persis-
tent log and immutable, periodically written storage files.
LSM trees and variants like Sorted Array Merge Trees
(SAMT) and Cache-Oblivious Look-ahead Arrays (COLA)
have been applied in many NoSQL systems (Cassan-
dra, CouchDB, LevelDB, Bitcask, RethinkDB, WiredTiger,
RocksDB, InfluxDB, TokuDB) [31]. Designing a database
to achieve maximum write performance by always writing
to a log is rather simple, the difficulty lies in providing
fast random and sequential reads. This requires an appro-
priate index structure that is either permanently updated as a
copy-on-write (COW) data structure (e.g. CouchDB’s COW
B-trees) or only periodically persisted as an immutable data
structure (e.g. in BigTable-style systems). An issue of all log-
structured storage approaches is costly garbage collection
(compaction) to reclaim space of updated or deleted items.

In virtualized environments like Infrastructure-as-a-
Service clouds many of the discussed characteristics of the
underlying storage layer are hidden.

3.3 Query processing

The querying capabilities of a NoSQL database mainly fol-
low from its distribution model, consistency guarantees and
data model. Primary key lookup, i.e. retrieving data items
by a unique ID, is supported by every NoSQL system, since
it is compatible to range- as well as hash-partitioning. Fil-
ter queries return all items (or projections) that meet a
predicate specified over the properties of data items from
a single table. In their simplest form, they can be per-
formed as filtered full-table scans. For hash-partitioned
databases this implies a scatter-gather pattern where each
partition performs the predicated scan and results aremerged.
For range-partitioned systems, any conditions on the range
attribute can be exploited to select partitions.

To circumvent the inefficiencies of O(n) scans, secondary
indexes can be employed. These can either be local sec-
ondary indexes that are managed in each partition or global
secondary indexes that index data over all partitions [4]. As
the global index itself has to be distributed over partitions,
consistent secondary index maintenance would necessitate
slow and potentially unavailable commit protocols. There-
fore in practice,most systems only offer eventual consistency
for these indexes (e.g. Megastore, Google AppEngine Data-
store, DynamoDB) or do not support them at all (e.g. HBase,
Azure Tables). When executing global queries over local
secondary indexes the query can only be targeted to a sub-
set of partitions if the query predicate and the partitioning
rules intersect. Otherwise, results have to be assembled
through scatter-gather. For example, a user table with range-
partitioning over an age field can service queries that have an
equality condition on age from one partition whereas queries
over names need to be evaluated at each partition. A special

case of global secondary indexing is full-text search, where
selected fields or complete data items are fed into either a
database-internal inverted index (e.g. MongoDB) or to an
external search platform such as ElasticSearch or Solr (Riak
Search, DataStax Cassandra).

Queryplanning is the task of optimizing a query plan tomin-
imize execution costs [25]. For aggregations and joins, query
planning is essential as these queries are very inefficient and
hard to implement in application code. The wealth of liter-
ature and results on relational query processing is largely
disregarded in current NoSQL systems for two reasons.
First, the key-value and wide-column model are centered
around CRUD and scan operations on primary keys which
leave little room for query optimization. Second, most work
on distributed query processing focuses on OLAP (online
analytical processing) workloads that favor throughput over
latency whereas single-node query optimization is not easily
applicable for partitioned and replicated databases. However,
it remains an open research challenge to generalize the large
body of applicable query optimization techniques especially
in the context of document databases9.

In-database analytics can be performed either natively (e.g.
in MongoDB, Riak, CouchDB) or through external analytics
platforms such asHadoop, Spark and Flink (e.g. inCassandra
and HBase). The prevalent native batch analytics abstrac-
tion exposed by NoSQL systems is MapReduce10 [17] .
Due to I/O, communication overhead and limited execu-
tion plan optimization, these batch- andmicro-batch-oriented
approaches have high response times. Materialized views
are an alternative with lower query response times. They are
declared at design time and continuously updated on change
operations (e.g. in CouchDB andCassandra). However, simi-
lar to global secondary indexing, view consistency is usually
relaxed in favor of fast, highly-available writes, when the
system is distributed. As only few database systems come
with built-in support for ingesting and querying unbounded
streams of data, near-real-time analytics pipelines com-
monly implement either the Lambda Architecture [39] or
the Kappa Architecture [33]: the former complements a
batch processing framework like HadoopMapReduce with a
stream processor such as Storm [6] and the latter exclusively
relies on stream processing and forgoes batch processing
altogether.

9 Currently only RethinkDB can perform general θ-joins. MongoDB’s
aggregation framework has support for left-outer equi-joins in its
aggregation framework and CouchDB allows joins for pre-declared
map-reduce views.
10 An alternative to MapReduce] are generalized data processing
pipelines, where the database tries to optimize the flow of data and
locality of computation based on a more declarative query language
(e.g. MongoDB’s aggregation framework).
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Fig. 6 A decision tree for mapping requirements to (NoSQL) database systems

4 System case studies

In this section, we provide a qualitative comparison of some
of themost prominent key-value, document andwide-column
stores. We present the results in strongly condensed com-
parisons and refer to the documentations of the individual
systems for in-detail information. The proposed NoSQL
Toolbox (see Fig. 4, p. 5) is a means of abstraction that can
be used to classify database systems along three dimensions:
functional requirements, non-functional requirements and
the techniques used to implement them. We argue that this
classification characterizes many database systems well and
thus can be used to meaningfully contrast different database
systems: Table 1 shows a direct comparison of MongoDB,
Redis, HBase, Riak, Cassandra and MySQL in their respec-
tive default configurations. A more verbose comparison of
central system properties is presented in Table 2 (see p. 11).

The methodology used to identify the specific system
properties consists of an in-depth analysis of publicly avail-
able documentation and literature on the systems. Further-
more, some properties had to be evaluated by researching the
open-source code bases, personal communication with the
developers as well as a meta-analysis of reports and bench-
marks by practitioners.

The comparison elucidates how SQL and NoSQL data-
bases are designed to fulfill very different needs: RDBMSs
provide an unmatched level of functionality whereas NoSQL
databases excel on the non-functional side through scal-

ability, availability, low latency and/or high throughput.
However, there are also large differences among the NoSQL
databases. Riak and Cassandra, for example, can be con-
figured to fulfill many non-functional requirements, but are
only eventually consistent and do not feature many func-
tional capabilities apart from data analytics and, in case of
Cassandra, conditional updates. MongoDB and HBase, on
the other hand, offer stronger consistency and more sophisti-
cated functional capabilities such as scan queries and—only
MongoDB:— filter queries, but do not maintain read and
write availability during partitions and tend to display higher
read latencies. Redis, as the only non-partitioned system in
this comparison apart from MySQL, shows a special set of
trade-offs centered around the ability to maintain extremely
high throughput at low-latency using in-memory data struc-
tures and asynchronous master-slave replication.

5 Conclusions

Choosing a database system always means to choose one
set of desirable properties over another. To break down the
complexity of this choice, we present a binary decision tree in
Fig. 6 that maps trade-off decisions to example applications
and potentially suitable database systems. The leaf nodes
cover applications ranging from simple caching (left) to Big
Data analytics (right). Naturally, this view on the problem
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space is not complete, but it vaguely points towards a solution
for a particular data management problem.

The first split in the tree is along the access pattern of
applications: they either rely on fast lookups only (left half)
or require more complex querying capabilities (right half).
The fast lookup applications can be distinguished further by
the data volume they process: if the main memory of one sin-
gle machine can hold all the data, a single-node system like
Redis or Memcache probably is the best choice, depending
on whether functionality (Redis) or simplicity (Memcache)
is favored. If the data volume is or might grow beyond RAM
capacity or is even unbounded, a multi-node system that
scales horizontally might be more appropriate. The most
important decision in this case is whether to favor avail-
ability (AP) or consistency (CP) as described by the CAP
theorem. Systems like Cassandra and Riak can deliver an
always-on experience, while systems like HBase, MongoDB
and DynamoDB deliver strong consistency.

The right half of the tree covers applications requiring
more complex queries than simple lookups. Here, too, we
first distinguish the systems by the data volume they have to
handle according towhether single-node systems are feasible
(HDD-size) or distribution is required (unbounded volume).
For common OLTP (online transaction processing) work-
loads onmoderately large data volumes, traditionalRDBMSs
or graph databases like Neo4J are optimal, because they
offer ACID semantics. If, however, availability is of the
essence, distributed systems like MongoDB, CouchDB or
DocumentDB are preferrable.

If the data volume exceeds the limits of a single machine,
the choice of the right system depends on the prevalent query
pattern: When complex queries have to be optimised for
latency, as for example in social networking applications,
MongoDB is very attractive, because it facilitates expressive
ad-hoc queries. HBase and Cassandra are also useful in such
a scenario, but excel at throughput-optimised Big Data ana-
lytics, when combined with Hadoop.

In summary, we are convinced that the proposed top-
down model is an effective decision support to filter the
vast amount of NoSQL database systems based on central
requirements. The NoSQL Toolbox furthermore provides a
mapping from functional and non-functional requirements to
common implementation techniques to categorize the con-
stantly evolving NoSQL space.
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